Andersen, M. M., Kiverstein, J., Miller, M. & Roepstorff, A. Play in predictive minds: A cognitive theory of play. Psychol. Rev. 130, 462–479 (2023).
Google Scholar
Pellis, S., & Pellis, V. The playful brain: Venturing to the limits of neuroscience. Simon and Schuster. (2013).
Lillard, A. S. Why do the children (pretend) play? Trends Cogn. Sci. 21, 826–834 (2017).
Google Scholar
Nguyen, A., & Bavelier, B. Play in video games. Neurosci. Biobeh. Rev. 153,https://doi.org/10.1016/j.neubiorev.2023.105386.(2023)
Franceschini, S., Bertoni, S., Lulli, M., Pievani, T. & Facoetti, A. Short-term effects of video-games on cognitive enhancement: The role of positive emotions. J. Cogn. Enhanc. 6, 29–46 (2022).
Google Scholar
Franceschini, S. et al. Action video games make dyslexic children read better. Curr. Biol. 23, 462–466 (2013).
Google Scholar
Bavelier, D., Green, C. S. & Dye, M. W. Children, wired: For better and for worse. Neuron 67, 692–701 (2010).
Google Scholar
Green, C. S. & Bavelier, D. Learning, attentional control, and action video games. Curr. Biol. 22, 197–206 (2012).
Google Scholar
Bavelier, D. & Green, C. S. Enhancing attentional control: lessons from action video games. Neuron 104, 147–163 (2019).
Google Scholar
Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).
Google Scholar
Roelfsema, P. R., van Ooyen, A. & Watanabe, T. Perceptual learning rules based on reinforcers and attention. Trends Cogn. Sci. 14, 64–71 (2010).
Google Scholar
Stevens, C. & Bavelier, D. The role of selective attention on academic foundations: A cognitive neuroscience perspective. Develop. Cogn. Neurosci. 2, S30–S48 (2012).
Google Scholar
Green, C. S. & Bavelier, D. Action video game modifies visual selective attention. Nature 423, 534–537 (2003).
Google Scholar
Li, R., Polat, U., Makous, W. & Bavelier, D. Enhancing the contrast sensitivity function through action video game training. Nat. Neurosci. 12, 549–551 (2009).
Google Scholar
Bediou, B. et al. Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills. Psychol. Bull. 144, 77 (2018).
Google Scholar
Bediou, B., et al. (2023). Effects of Action Video Game Play on Cognitive Skills: A Meta-Analysis. Technology, Mind, and Behavior, 4(1: Spring 2023). https://doi.org/10.1037/TMB0000102.
Pasqualotto, A. et al. Enhancing reading skills through a video game mixing action mechanics and cognitive training. Nat. Hum. Behav. 6, 545–554 (2022).
Google Scholar
Chaarani, B. et al. Association of video gaming with cognitive performance among children. JAMA Netw. Open 5, e2235721 (2022).
Google Scholar
Sauce, B., Liebherr, M., Judd, N. & Klingberg, T. The impact of digital media on children’s intelligence while controlling for genetic differences in cognition and socioeconomic background. Sci. Rep. 12, 1–14 (2022).
Google Scholar
Green, C. S., Pouget, A. & Bavelier, D. Improved probabilistic inference as a general learning mechanism with action video games. Curr. Biol. 20, 1573–1579 (2010).
Google Scholar
Heekeren, H., Marrett, S. & Ungerleider, L. The neural systems that mediate human perceptual decision making. Nat. Rev. Neurosci. 9, 467–479 (2008).
Google Scholar
O’Connell, R. G., Dockree, P. M. & Kelly, S. P. A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nat. Neurosci. 15, 1729–1737 (2012).
Google Scholar
Mancarella, M., Antzaka, A., Bertoni, S., Facoetti, A. & Lallier, M. Enhanced disengagement of auditory attention and phonological skills in action video gamers. Computers Hum. Behav. 135, 107344 (2022).
Google Scholar
Antzaka, A. et al. Enhancing reading performance through action video games: The role of visual attention span. Sci. Rep. 7, 1–10 (2017).
Google Scholar
Kollins, S. H. et al. A novel digital intervention for actively reducing severity of paediatric ADHD (STARS-ADHD): a randomised controlled trial. Lancet Digit Health 2, e168–e178 (2020).
Google Scholar
Ren, X., Wu, Q., Cui, N., Zhao, J., Bi, H.B. Effectiveness of digital game-based trainings in children with neurodevelopmental disorders: A meta-analysis. Res. Develop. Disabilities, 133. https://doi.org/10.1016/j.ridd.2022.104418. (2023).
Puccio, G., et al. Action Video Games Training in Children with Developmental Dyslexia: A Meta-analysis. Int. J. Human-Comput Interac. https://doi.org/10.1080/10447318.2023.2267297 (2023).
Facoetti, A. et al. Auditory and visual automatic attention deficits in developmental dyslexia. Cogn. Brain Res. 16, 185–191 (2003).
Google Scholar
Facoetti, A. et al. Multisensory spatial attention deficits are predictive of phonological decoding skills in developmental dyslexia. J. Cogn. Neurosci. 22, 1011–1025 (2010).
Google Scholar
Renvall, H. & Hari, R. Auditory cortical responses to speech-like stimuli in dyslexic adults. J. Cogn. Neurosci. 14, 757–768 (2002).
Google Scholar
Roach, N. W. & Hogben, J. H. Impaired filtering of behaviourally irrelevant visual information in dyslexia. Brain 130, 771–785 (2007).
Google Scholar
Franceschini, S., Gori, S., Ruffino, M., Pedrolli, K. & Facoetti, A. A causal link between visual spatial attention and reading acquisition. Curr. Biol. 22, 814–819 (2012).
Google Scholar
Zorzi, M. et al. Extra-large letter spacing improves reading in dyslexia. Proc. Natl Acad. Sci. 109, 11455–11459 (2012).
Google Scholar
Carroll, J. M., Solity, J. & Shapiro, L. R. Predicting dyslexia using prereading skills: the role of sensorimotor and cognitive abilities. J. Child Psychol. Psychiatry 57, 750–758 (2016).
Google Scholar
Gori, S., Seitz, A. R., Ronconi, L., Franceschini, S. & Facoetti, A. Multiple causal links between magnocellular–dorsal pathway deficit and developmental dyslexia. Cereb. Cortex 26, 4356–4369 (2016).
Google Scholar
Bertoni, S., Franceschini, S., Ronconi, L., Gori, S. & Facoetti, A. Is excessive visual crowding causally linked to developmental dyslexia? Neuropsychologia 130, 107–117 (2019).
Google Scholar
Gavril, L., Roșan, A. & Szamosközi, Ș. The role of visual-spatial attention in reading development: a meta-analysis. Cogn. Neuropsychol. 38, 387–407 (2021).
Google Scholar
Gabrieli, J. D. Dyslexia: a new synergy between education and cognitive neuroscience. Science 325, 280–283 (2009).
Google Scholar
Peterson, R. L. & Pennington, B. F. Developmental dyslexia. Lancet 379, 1997–2007 (2012).
Google Scholar
Bradley, L. & Bryant, P. Categorizing sound and learning to read: a causal connection. Nature 301, 419–421 (1983).
Google Scholar
Goswami, U. A temporal sampling framework for developmental dyslexia. Trends Cogn. Sci. 15, 3–10 (2011).
Google Scholar
Melby-Lervåg, M., Lyster, S. A. & Hulme, C. Phonological skills and their role in learning to read: a meta-analytic review. Psychol. Bull. 138, 322–352 (2012).
Google Scholar
Castles, A. & Coltheart, M. Is there a causal link from phonological awareness to success in learning to read? Cognition 91, 77–111 (2004).
Google Scholar
Stein, J. & Walsh, V. To see but not to read; the magnocellular theory of dyslexia. Trends Neurosci. 20, 147–152 (1997).
Google Scholar
Hari, R. & Renvall, H. Impaired processing of rapid stimulus sequences in dyslexia. Trends Cogn. Sci. 5, 525–532 (2001).
Google Scholar
Tallal, P. Improving language and literacy is a matter of time. Nat. Rev. Neurosci. 5, 721–728 (2004).
Google Scholar
Vidyasagar, T. R. & Pammer, K. Dyslexia: a deficit in visuo-spatial attention, not in phonological processing. Trends Cogn. Sci. 14, 57–63 (2010).
Google Scholar
Gori, S. & Facoetti, A. Perceptual learning as a possible new approach for remediation and prevention of developmental dyslexia. Vis. Res. 99, 78–87 (2014).
Google Scholar
Grainger, J., Dufau, S. & Ziegler, J. C. A vision of reading. Trends Cogn. Sci. 20, 171–179 (2016).
Google Scholar
Hancock, R., Pugh, K. R. & Hoeft, F. Neural noise hypothesis of developmental dyslexia. Trends Cogn. Sci. 21, 434–448 (2017).
Google Scholar
Farmer, M. E. & Klein, R. M. The evidence for a temporal processing deficit linked to dyslexia: A review. Psychonomic Bull. Rev. 2, 460–493 (1995).
Google Scholar
Goswami, U., Huss, M., Mead, N. & Fosker, T. Auditory sensory processing and phonological development in high IQ and exceptional readers, typically developing readers, and children with dyslexia: a longitudinal study. Child Dev. 92, 1083–1098 (2021).
Google Scholar
Guerra, G., et al. Attentional modulation of neural sound tracking in children with and without dyslexia. Develop. Sci. e13420. https://doi.org/10.1111/desc.13420 (2023).
Guerra, G. et al. Auditory attention influences trajectories of symbol-speech sound learning in children with and without dyslexia. J. Exp. Child Psychol. 237, 105761 (2024).
Google Scholar
Peng, P. et al. A meta-analytic review of cognition and reading difficulties: Individual differences, moderation, and language mediation mechanisms. Psychol. Bull. 148, 227–272 (2022).
Google Scholar
Chyl, K. et al. Brain dynamics of (a)typical reading development—a review of longitudinal studies. NPJ Sci. Learn. 6, 4 (2021).
Google Scholar
Al Dahhan, N. Z. et al. Dissociating executive function and ADHD influences on reading ability in children with dyslexia. Cortex 153, 126–142 (2022).
Google Scholar
Blockmans, L. et al. Role of family risk and of pre-reading auditory and neurostructural measures in predicting reading outcome. Neurobiol. Lang. 4, 474–500 (2023).
Google Scholar
Boets, B., Vandermosten, M., Cornelissen, P., Wouters, J. & Ghesquière, P. Coherent motion sensitivity and reading development in the transition from prereading to reading stage. Child Dev. 82, 854–869 (2011).
Google Scholar
Boets, B., Wouters, J., Van Wieringen, A., De Smedt, B. & Ghesquière, P. Modelling relations between sensory processing, speech perception, orthographic and phonological ability, and literacy achievement. Brain Lang. 106, 29–40 (2008).
Google Scholar
Loosli, S. V., Buschkuehl, M., Perrig, W. J. & Jaeggi, S. M. Working memory training improves reading processes in typically developing children. Child Neuropsychol. 18, 62–78 (2012).
Google Scholar
Karbach, J., Strobach, T. & Schubert, T. Adaptive working-memory training benefits reading, but not mathematics in middle childhood. Child Neuropsychol. 21, 285–301 (2015).
Google Scholar
Johann, V. E., & Karbach, J. Effects of game‐based and standard executive control training on cognitive and academic abilities in elementary school children. Develop. Sci., e12866. https://doi.org/10.1111/desc.12866 (2019).
Berger, E. M., Fehr, E., Hermes, H., Schunk, D., & Winkel, K. The impact of working memory training on children’s cognitive and noncognitive skills. NHH Dept. of Economics Discussion Paper, (09). http://hdl.handle.net/10419/223780 (2020).
Bowyer-Crane, C. et al. Improving early language and literacy skills: Differential effects of an oral language versus a phonology with reading intervention. J. Child Psychol. Psychiatry 49, 422–432 (2008).
Google Scholar
McArthur, G. et al. Phonics training for English‐speaking poor readers. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD009115.pub3 (2018).
Google Scholar
Bowers, J. S. Reconsidering the evidence that systematic phonics is more effective than alternative methods of reading instruction. Educ. Psychol. Rev. 32, 681–705 (2020).
Google Scholar
Peters, J. L., De Losa, L., Bavin, E. L. & Crewther, S. G. Efficacy of dynamic visuo-attentional interventions for reading in dyslexic and neurotypical children: A systematic review. Neurosci. Biobehav. Rev. 100, 58–76 (2019).
Google Scholar
Franceschini, S. et al. Action video games improve reading abilities and visual-to-auditory attentional shifting in English-speaking children with dyslexia. Sci. Rep. 7, 5863 (2017).
Google Scholar
Franceschini, S. & Bertoni, S. Improving action video games abilities increases the phonological decoding speed and phonological short-term memory in children with developmental dyslexia. Neuropsychologia 130, 100–106 (2019).
Google Scholar
Peters, J. L., Crewther, S. G., Murphy, M. J. & Bavin, E. L. Action video game training improves text reading accuracy, rate and comprehension in children with dyslexia: a randomized controlled trial. Sci. Rep. 11, 1–11 (2021).
Google Scholar
Łuniewska, M. et al. Neither action nor phonological video games make dyslexic children read better. Sci. Rep. 8, 549 (2018).
Google Scholar
Battelli, L., Pascual-Leone, A. & Cavanagh, P. The ‘when’ pathway of the right parietal lobe. Trends Cogn. Sci. 11, 204–210 (2007).
Google Scholar
Petersen, S. E. & Posner, M. I. The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 35, 73 (2012).
Google Scholar
Uddin, L. Q. Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 16, 55–61 (2015).
Google Scholar
Martinez-Lincoln, A., Fotidzis, T. S., Cutting, L. E., Price, G. R., & Barquero, L. A. Examination of common and unique brain regions for atypical reading and math: A meta-analysis. Cereb. Cortex. https://doi.org/10.1093/cercor/bhad013 (2023).
Hari, R., Renvall, H. & Tanskanen, T. Left minineglect in dyslexic adults. Brain 124, 1373–1380 (2001).
Google Scholar
Facoetti, A. & Molteni, M. The gradient of visual attention in developmental dyslexia. Neuropsychologia 39, 352–357 (2001).
Google Scholar
Facoetti, A., Turatto, M., Lorusso, M. L. & Mascetti, G. G. Orienting of visual attention in dyslexia: evidence for asymmetric hemispheric control of attention. Exp. Brain Res. 138, 46–53 (2001).
Google Scholar
Gori, S. et al. The DCDC2 intron 2 deletion impairs illusory motion perception unveiling the selective role of magnocellular-dorsal stream in reading (dis) ability. Cereb. Cortex 25, 1685–1695 (2015).
Google Scholar
Mascheretti, S. et al. The mediation role of dynamic multisensory processing using molecular genetic data in dyslexia. Brain Sci. 10, 993 (2020).
Google Scholar
Perani, D. et al. White matter deficits correlate with visual motion perception impairments in dyslexic carriers of the DCDC2 genetic risk variant. Exp. Brain Res. 239, 2725–2740 (2021).
Google Scholar
Manning, C. et al. Visual motion and decision-making in dyslexia: Reduced accumulation of sensory evidence and related neural dynamics. J. Neurosci. 42, 121–134 (2022).
Google Scholar
Stefanac, N. R., Zhou, S. H., Spencer-Smith, M. M., O’Connell, R. & Bellgrove, M. A. A neural index of inefficient evidence accumulation in dyslexia underlying slow perceptual decision making. Cortex 142, 122–137 (2021).
Google Scholar
Mascheretti, S. et al. Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Transl. Psychiatry 7, e987–e987 (2017).
Google Scholar
Lallier, M. et al. Behavioral and ERP evidence for amodal sluggish attentional shifting in developmental dyslexia. Neuropsychologia 48, 4125–4135 (2010).
Google Scholar
Landerl, K. et al. Phonological awareness and rapid automatized naming as longitudinal predictors of reading in five alphabetic orthographies with varying degrees of consistency. Sci. Stud. Read. 23, 220–234 (2019).
Google Scholar
McWeeny, S. et al. Rapid Automatized Naming (RAN) as a Kindergarten Predictor of Future Reading in English: A Systematic Review and Meta‐analysis. Read. Res. Q. 57, 1187–1211 (2022).
Google Scholar
Sverdlov, O. & Ryeznik, Y. Implementing unequal randomization in clinical trials with heterogeneous treatment costs. Stat. Med. 38, 2905–2927 (2019).
Google Scholar
Torgerson, D. J. & Torgerson, C. J. Unequal randomisation. Designing Randomised Trials in Health, Education and the Social Sciences: An Introduction, 108–113 (2008).
Green, S. C. et al. Improving methodological standards in behavioral interventions for cognitive enhancement. J. Cogn. Enhanc. 3, 2–29 (2019).
Google Scholar
Nava, E., Föcker, J. & Gori, M. Children can optimally integrate multisensory information after a short action-like mini game training. Develop. Sci. 23, e12840 (2020).
Google Scholar
Schroeder, C. E., Lakatos, P., Kajikawa, Y., Partan, S. & Puce, A. Neuronal oscillations and visual amplification of speech. Trends Cogn. Sci. 12, 106–113 (2008).
Google Scholar
Choi, D., Yeung, H. H. & Werker, J. F. Sensorimotor foundations of speech perception in infancy. Trends Cogn. Sci. 27, 773–784 (2023).
Google Scholar
Wang, J., Yamasaki, B. L., Weiss, Y. & Booth, J. R. Both frontal and temporal cortex exhibit phonological and semantic specialization during spoken language processing in 7- to 8-year-old children. Hum. Brain Mapp. 42, 3534–3546 (2021).
Google Scholar
Weiss, Y., Cweigenberg, H. G. & Booth, J. R. Neural specialization of phonological and semantic processing in young children. Hum. Brain Mapp. 39, 4334–4348 (2018).
Google Scholar
Klingberg, T. Training and plasticity of working memory. Trends Cogn. Sci. 14, 317–324 (2010).
Google Scholar
Turker, S. & Hartwigsen, G. Exploring the neurobiology of reading through non-invasive brain stimulation: A review. Cortex 141, 497–521 (2021).
Google Scholar
von Bastian, C. C. et al. Mechanisms underlying training-induced cognitive change. Nat. Rev. Psychol. 1, 30–41 (2022a).
Google Scholar
von Bastian, C. C. et al. Mechanisms of processing speed training and transfer effects across the adult lifespan: protocol of a multi-site cognitive training study. BMC Psychol. 10, 168 (2022b).
Google Scholar
Edwards, J. D., Fausto, B. A., Tetlow, A. M., Corona, R. T. & Valdés, E. G. Systematic review and meta-analyses of useful field of view cognitive training. Neurosci. Biobehav. Rev. 84, 72–91 (2018).
Google Scholar
Könen, T. & Karbach, J. Analyzing individual differences in intervention-related changes. Adv. Methods Pract. Psychol. Sci. 4, 2515245920979172 (2021).
Wass, S., Porayska-Pomsta, K. & Johnson, M. H. Training attentional control in infancy. Curr. Biol. 21, 1543–1547 (2011).
Google Scholar
Elsabbagh, M. et al. Disengagement of visual attention in infancy is associated with emerging autism in toddlerhood. Biol. Psychiatry 74, 189–194 (2013).
Google Scholar
Boyce, W. T., Levitt, P., Martinez, F. D., McEwen, B. S. & Shonkoff, J. P. Genes, Environments, and Time: The biology of adversity and resilience. Paediatrics 147, e20201651 (2021).
Google Scholar
Erdfelder, E., Faul, F. & Buchner, A. GPOWER: A general power analysis program. Behav. Res. Methods, Instrum. Comput. 28, 1–11 (1996).
Google Scholar
Marotta, L., Trasciani, M. & Vicari, S. CMF. Valutazione Delle Competenze Metafonologiche. (Erikson, Trento, 2004).
Bertelli, B., & Bilancia, G. Batteria per la Valutazione dell’Attenzione Uditiva e della Memoria di Lavoro Fonologica nell’Età Evolutiva. Firenze: Organizzazioni Speciali. (2006).
Gaggi, O. et al. Serious games for early identification of developmental dyslexia. Comput. Entertain. 15, 1–24 (2017).
Google Scholar